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This paper deals with the dynamic multi-item capacitated lot-sizing problem under random period

demands (SCLSP). Unfilled demands are backordered and a fill rate constraint is in effect. It is assumed

the realization of the demands. The problem is approximated with the set partitioning model and a

heuristic solution procedure that combines column generation and the recently developed ABCb

heuristic is proposed.
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1. Introduction

We consider the stochastic version of the dynamic multi-item
capacitated lot-sizing problem (CLSP). The problem is to deter-
mine production quantities to satisfy demands for multiple
products over a finite discrete time horizon such that the sum
of setup and holding costs is minimized, whereby a capacity
constraint of a resource must be taken into consideration. In
contrast to the deterministic CLSP, we assume that for every
product k and period t the demand is a random variable Dkt

(k¼1,2,y,K; t¼1,2,y,T). The period demands are non-stationary
(to permit dynamic effects such as seasonal variations, promo-
tions, or general mixtures of known customer orders with random
portions of period demands), which usually is the case in a
material requirements planning (MRP) based environment.
Demand that cannot be filled immediately from stock on hand
is backordered. As the precise quantification of shortage penalty
costs which involve intangible factors such as loss of customer
goodwill is very difficult, if not impossible, we assume that
management has specified a target service level. In particular,
we assume that the fill rate criterion (b service level) is in
effect, as this criterion is very popular in industrial practice
(see Tempelmeier [2]).

Industrial (MRP based) planning practice usually applies a
forecasting procedure that provides a deterministic time series of
expected future demands. Uncertainty is taken into considera-
tion by reserving a fixed amount of inventory as safety stock
ll rights reserved.
(see Wortmann [3], Baker [4]). The amount of this reserve stock is
usually computed with simple rules of thumb borrowed from
stationary inventory theory, e.g. the standard deviation of the
demand during the risk period is multiplied by a quantile of the
standard normal distribution. In this way, it is almost impossible
to meet targeted service levels. In addition, using time-indepen-
dent safety stocks under dynamic conditions may result in
significant cost penalties (see Tunc et al. [5]).

It is obvious that apart from the MRP-inherent neglect of
limited capacities this widely used approach completely ignores
the impact that lot sizes have on the absorption of risk. For
example, in a case when due to high setup costs large lot sizes are
used which cover the demands of many periods, it probably will
be optimal to use no safety stock at all. On the other hand, if setup
times or costs are reduced through technical measures in order to
reduce lot sizes and the associated cycle stock, the required safety
stock will increase.

In addition, which is even more problematic, the dynamic
alteration of the materials requirements as a consequence of
newly observed demand realizations according to the MRP plan-
ning process leads to random releases of production lots, as the
actual timing and size of the required replenishments are the
outcome of the demand process, which is random.

The resulting increase of the variance of the production
quantities may have some unwanted consequences. First, in
multi-level bill-of-material structures (or supply chains), the
random change of a production order of a parent item leads to
random requirements for its predecessors. This may cause the
rescheduling of the production orders for the predecessors, which
is a problem if a predecessor comes from an external supplier. If
production orders are rescheduled, then demand variations occur
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that are propagated upstream through the supply chain, and
which must be accounted for through buffers. In the literature
this issue is discussed as planning nervousness. Second, the
random change of the timing or size of a production lot directly
translates into random resource requirements. For a machine, this
is usually not a problem as long as the capacity of the machine
is not overloaded. If an overload occurs, however, with fixed
machine capacities this implies that the production plan becomes
infeasible. In this case the planned due dates will be missed. This
is one of the biggest problems found in short-term production
planning in industry. In addition, there may even be cases when
due to technical constraints the production quantities are
unchangeable. This is often true in the process industries. Finally,
if the considered resource is a human operator, then it may be
unfavorable or even prohibited by labor agreement to change the
workload in a period.

One countermeasure is the definition of a planning horizon
with an unchangeable production plan (frozen schedule). This is
what we study in the current paper. In the following, we assume
that, according to the static-uncertainty strategy of Bookbinder
and Tan [1], all decisions concerning the time and the production
quantities are made in advance for the entire planning horizon,
which is equivalent to using a frozen schedule. The unavoidable
randomness of demand is accounted for through the appropriate
sizing of the orders. Other than Bookbinder and Tan [1], we
consider multiple products, a resource with limited capacity and a
fill rate constraint.

The rest of this paper is organized as follows. In Section 2 the
relevant literature is reviewed. Next, in Section 3, the considered
stochastic lot-sizing problem under a fill rate per cycle constraint
as proposed by Tempelmeier and Herpers [6] is approximated
with a set partitioning model. Then, in Section 4, we present a
heuristic column generation procedure to solve the LP-relaxation
of this model and combine this procedure with the ABCb heuristic
proposed in Tempelmeier and Herpers [6] to solve the complete
problem. The results of a numerical experiment are reported
in Section 5. Finally, Section 6 contains some concluding remarks.
2. Literature

The deterministic multi-item dynamic capacitated lot-sizing
problem has been studied for a long time. For recent overviews
see Karimi et al. [7], Jans and Degraeve [8], Robinson et al. [9] and
Buschkühl et al. [10]. However, only a limited number of
researchers have considered dynamic capacitated lot sizing under
random demand. A literature overview is presented in Sox
et al. [11]. Sox and Muckstadt [12] solve a variant of the stochastic
dynamic CLSP, where item- and period-specific backorder costs as
well as extendible production capacities are considered. These
authors propose a Lagrangean heuristic to solve the resulting non-
linear integer programming problem that is repeatedly applied in
a dynamic planning environment. Martel et al. [13] develop a
branch-and-bound procedure for the solution of a similar model
formulation.

Brandimarte [14] considers the stochastic CLSP where the
uncertainty of the demand is represented through a scenario tree.
In this case, the period demands are modeled as discrete random
variables. The evolution of demand over time is depicted with a
directed layered tree, where each layer corresponds to a planning
period and the nodes are linked to realizations of the discrete
stochastic demand process. The resulting large-scale deterministic
MILP model is then solved with a commercially available solver
using rolling schedules with lot-sizing windows. As demonstrated
by Brandimarte [14], the scenario-based approach suffers from a
dramatically increasing complexity, if the number of periods and/or
the number of possible outcomes of the period demands are
increased. In addition, currently there are no scenario-based
models available which could account for product-specific fill rate
constraints.

Tempelmeier and Herpers [6] propose a formulation of the
dynamic capacitated lot-sizing problem under random demand,
when the performance is measured in terms of a fill rate per cycle
which is a popular performance measure in industry. They
propose the ABCb heuristic which is an extension of the A=B=C

heuristic of Maes and Van Wassenhove [15].
3. Problem formulation

Below the following notation is used:
bt
 capacity in period t (time units)
b%

k
 target fill rate per cycle for product k
cn
 total cost of production plan n of product k
Dkt
 demand for product k in period t
Fkt
 backorders of product k in period t
dn
 binary selection variable for plan n
gkt
 binary setup indicator for product k in period t
hk
 inventory holding cost per time period per unit of
product k
Ikt
 net inventory for product k at the end of period t
Ikt
f,end
 backlog of product k at the end of period t
Ikt
f,prod
 backlog of product k after production in period t, but

before demand occurrence

K
 number of products

knt
 capacity requirement of production plan n in period t
lkt
 number of periods since the last setup (product k,
period t)
M
 sufficiently large number

okt
 indicator variable: okt ¼ 1, if production of product k

takes place in period t+1; okt ¼ 0 otherwise

Pk
 set of production plans for product k
pt
 dual variable associated to the capacity requirement
constraint of period t
qkt, qnt
 lot size of product k (production plan n) in period t
sk
 dual variable associated to the plan selection
constraint for product k
sk
 setup costs for product k
tbk
 capacity usage for production of one unit of product k
T
 length of the planning horizon
½x�þ
 maxf0,xg
½x��
 minf0,xg
Consider K products that are produced to stock on a single
resource with given period capacities bt (t¼1,2,y,T). The plan-
ning situation is completely identical with that assumed in the
classical dynamic capacitated lot-sizing problem (CLSP) without
setup times. However, there is one exception: For each product k

and each time period t, the period demands Dkt are random
variables with a known probability distribution and given period-
specific expected values E{Dkt} and variances V{Dkt}. These data,
which in a dynamic planning environment vary over time, are the
outcome of a forecasting procedure. The demands of the various
products are mutually independent and there is no autocorrela-
tion. Unfilled demands are backordered. The amount of back-
orders is controlled by imposing a fill rate per cycle constraint.
We define the fill rate per cycle as the ratio of the expected
demand observed during the coverage time of a production
order that is routinely filled from available stock on hand and
the actual lot size. More precisely, let t be a production period of
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product k, let t be the last period before the next production of
product k takes place and let qkt be the lot size produced in period
t covering the demand up to period t. Finally, let Fki be the
backorders of product k that occur during period i. Then for a
target service level b%

k it is required, that

1�
E
Pt

i ¼ t Fki

n o

E
Pt

i ¼ t Dki

n oZb%

k k¼ 1,2, . . . ,K ð1Þ

This constraint is equivalent to the fill rate definition under
stationary conditions which relates the average backorders per
cycle to the average replenishment quantity (see Silver and
Bischak [16]). However, it is a sharper requirement, as not only
in the long run, but also in each production cycle that the fill rate
target must be met. At the beginning of the planning horizon
there is a known initial inventory Ik0 (k¼1,2,y,K).

As noted above, our planning approach implements the ‘‘static
uncertainty’’ strategy of Bookbinder and Tan [1] which means
that at the beginning of the planning horizon, the complete
production plan is fixed in advance, including the timing and
the size of the production quantities. The resulting dynamic
multi-item stochastic capacitated lot-sizing problem is repre-
sented by the following model SCLSPb (see Tempelmeier and
Herpers [6]):

Model SCLSPb

Minimiere Z ¼
XK

k ¼ 1

XT

t ¼ 1

ðsk � gktþhk � Ef½Ikt �
þ gÞ ð2Þ

subject to

Ik,t�1þqkt�Dkt ¼ Ikt k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð3Þ

qkt�M � gkt r0 k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð4Þ

XK

k ¼ 1

tbk � qkt rbt t¼ 1,2, . . . ,T ð5Þ

If ,prod
kt ¼�½Ik,t�1þqkt�

� k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð6Þ

If ,end
kt ¼�½Ikt�

� k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð7Þ

Fkt ¼ If ,end
kt �If ,prod

kt k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð8Þ

lkt ¼ ðlk,t�1þ1Þ � ð1�gktÞ k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð9Þ

lk,0 ¼�1 k¼ 1,2, . . . ,K ð10Þ

okt ¼ gk,tþ1 k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T�1 ð11Þ

okT ¼ 1 k¼ 1,2, . . . ,K ð12Þ

1�
E
Pt

j ¼ t�lkt
Fkj

n o

E
Pt

j ¼ t�lkt
Dkj

n oZb�k k¼ 1,2, . . . ,K; tAftjokt ¼ 1g ð13Þ

qkt Z0 k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð14Þ

gkt Af0,1g k¼ 1,2, . . . ,K; t¼ 1,2, . . . ,T ð15Þ

The objective function (2) minimizes the total setup costs and
expected inventory holding costs, where [Ikt]

+ is the inventory on
hand at the end of period t for product k. Eq. (3) is the standard
inventory balance equation. Constraint (4) forces the setup indi-
cator gkt to 1, whenever there is a positive production quantity qkt,
according to the assumptions of a big-bucket lot-sizing model.
Constraint (5) requires that the available capacity bt per period
must not be exceeded. Eq. (6) defines the backlog in period t

immediately after a production has taken place and all
outstanding backorders, if any, have been filled as much as
possible before the new demand of period t occurs. Eq. (7)
describes the backlog at the end of period t. Eq. (8) defines the
backorders that newly occurred in period t.

The remaining equations are used for book-keeping. In order
to calculate the average fill rate during an order cycle, we count
the number of periods covered by a production quantity with the
help of variable lkt. Eqs. (11) and (12) set the indicator variable okt

to 1, if either period t+1 is a setup period or the planning horizon
ends in period t. In addition, the length of an order cycle (the
number of periods between two consecutive setups) must be
known. This is computed by means of Eqs. (9) and (10). lkt is reset
to zero whenever gkt ¼ 1, i.e., when t is a setup period for product
k. Otherwise, lkt is incremented by one to (lk,t�1+1). Eq. (13)
defines the expected fill rate within the actual production cycle
since the last production of product k.

Under deterministic demand the model reduces to the stan-
dard formulation of the CLSP. In this case all random variables are
deterministic, and constraints (6)–(13) can be omitted.

As originally proposed for a variant of the deterministic CLSP
by Manne [17], the lot-sizing problem can be approximated by a
set partitioning model as follows. Define for each product k a set
Pk (k¼1,2,y,K) of alternative production plans over the planning
horizon T. Each production plan n is composed of given setup
periods and associated lot sizes that cover an integer number of
period demands under consideration of the fill rate constraint.
The computation of the lot sizes is discussed below.

As the production quantities are fixed in advance, with a given
production plan n of product k, the expected total setup and
holding costs cn and the exact capacity requirements knt in period
t ðk¼ 1,2, . . . ,k;nAPk; t¼ 1,2, . . . ,TÞ can be determined. The pro-
blem is then to select for each product exactly one production
plan alternative such that in all periods the capacity constraint is
respected. The resulting set partitioning model formulation is

Model SCLSPSPP

Minimize Z ¼
XK

k ¼ 1

X
nAPk

cn � dn ð16Þ

subject to

XK

k ¼ 1

X
nAPk

knt � dnrbt t¼ 1,2, . . . ,T ðptÞ ð17Þ

X
nAPk

dn ¼ 1 k¼ 1,2, . . . ,K ðskÞ ð18Þ

dnZ0 k¼ 1,2, . . . ,K;nAPk ð19Þ

The objective function (16) minimizes the sum of the expected
costs of all selected production plans. dn is a binary variable that
selects production plan nAPk. Constraint (17) ensures that the
period capacity of the resource in period t is respected, whereby
knt is the capacity requirement resulting from production plan n

in period t. Eq. (18) states that for each product exactly one
production plan must be selected.

While model SCLSPSPP looks exactly like the standard SPP
formulation found in the literature (see Lasdon and Terjung [18],
Cattrysse et al. [19], Haase [20]), the basic difference is hidden in
the cost coefficients cn. The coefficient cn which represents the
expected costs of production plan nAPk is the result of an
embedded optimization problem. This problem consists in deter-
mining for each given setup period the minimum lot size required
to achieve the target service level at the end of the associated
production cycle.

Assume that for production plan nAPk a setup pattern is given
with Jn setups in periods tjðj¼ 1,2, . . . ,JnÞ. Then for each setup j the



Table 1
Production plan.

Period Lot size E {Inventory on hand} E {Backorders} b

1 312.68 212.68 0.00 –

2 – 112.74 0.05 –

3 – 27.69 14.95 0.95

4 322.56 235.24 0.00 –

5 – 135.79 0.54 –

6 – 50.25 14.46 0.95
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problem is to find the minimum lot size qntj
, that respects the

service level constraint for the current production cycle j. This
problem can be stated as follows:

Model MINQj

Minimize qntj
ð20Þ

s.t.

1�
E
Ptjþ 1�1

i ¼ tj
Fniðqntj

Þ

n o

E
Pt

i ¼ tj
Dki

n o Zb%

k ð21Þ

with tJnþ1 ¼ Tþ1. The minimum lot size is calculated with the
help of a search procedure. For a given setup pattern with Jn

setups and associated lot sizes the expected costs cn of production
plan nAPk can be easily computed. The setup cost is sk � Jn. The
resulting expected on hand inventory at the end of period t is
derived as follows. Let

Q ðtÞn ¼ Ik0þ
Xt

i ¼ 1

qni ð22Þ

be the sum of the initial inventory Ik0 and the production
quantities produced from period 1 up to period t, according to
production plan n, and let

Y ðtÞk ¼
Xt

i ¼ 1

Dki ð23Þ

denote the cumulated demands of product k from period 1 up to
period t. Then the expected inventory on hand at the end of
period t is equal to EfIp

ntg ¼ Ef½Q ðtÞn �Y ðtÞk �
þ g, where ½X�þ ¼max½X,0�.

This can be written as

EfIp
ntg ¼Q ðtÞn �EfY ðtÞk gþG1

Y ðtÞ
k

ðQ ðtÞn Þ t¼ 1,2, . . . ,T , ð24Þ

where G1
Y ðQ Þ ¼

R1
Q ðy�Q Þ � fY ðyÞ � dy is the first-order-loss function

with respect to the random variable Y and the quantity Q.
The backorders that newly occur in period t are the difference

between the backlog at the end of that period and the backlog
that remained after a replenishment at the beginning of the
period, before the occurrence of the period demand, i.e.

Fntðqntj
Þ ¼�½Int �

��ð�½In,t�1þqntj
��Þ t¼ tj,tjþ1, . . . ,T , ð25Þ

where ½X�� ¼min½X,0�. If the inventory position Int at the end of
period t is negative, then the backlog is � Int. This is the first term
in (25). Similarly, if the sum of the inventory position at the end of
period (t�1) plus the replenishment at the beginning of period t

is negative, then the backlog is �½In,t�1þqntj
�. This is the second

term in (25). The difference is the backorders that newly occurred
in period t. Note that the expected backlog at the end of period t is
the expected positive difference between the cumulated demand
up to period t, Yk

(t) and the cumulated production quantity, Qn
(t),

i.e. G1
Y ðtÞ

k

ðQ ðtÞn Þ. Similarly, the expected backlog after the replenished
at the beginning of period t is equal to the expected positive
difference between the cumulated demand up to period (t�1),
Yk

(t�1) and the cumulated production quantity up to period t, Q ðtÞn ,
i.e. G1

Y ðt�1Þ
k

ðQ ðtÞn Þ.
The expected number of backorders associated to period t that

occur if production plan n is applied for the considered product
can then be written as

EfFntðqntj
Þg ¼ G1

Y ðtÞ
k

ðQ ðtÞn Þ�G1
Y ðt�1Þ

k

ðQ ðtÞn Þ t¼ tj,tjþ1, . . . ,T ð26Þ

For example, assume a production plan (the index n is now
omitted) for T¼6 periods with identical period demands that are
normally distributed with mean mt ¼ 100 and standard deviation
st ¼ 30 (t¼1,2,y,6). If two production lots q1¼312.68 and
q4¼322.56 are scheduled in periods t1 ¼ 1 and t2 ¼ 4, then the
development of the expected backorders and the expected inven-
tory on hand is shown in Table 1.

For example, the expected backorders in period 3 (14.95) are
calculated as follows:

mY ð2Þ ¼ 200, sY ð2Þ ¼ 42:43, mY ð3Þ ¼ 300, sY ð3Þ ¼ 51:96

G1
Y ð2Þ ð312:68Þ ¼ 0:05, G1

Y ð3Þ ð312:68Þ ¼ 15:00

EfF3ð312:68Þg ¼ 15:00�0:05¼ 14:95

The lot sizes have been selected such that the target fill rate of
95% at the end of each production cycle is met. Although both
production cycles have identical lengths, the lot sizes are differ-
ent, as the net inventory at the end of the first cycle has an impact
on the production requirements in the second cycle.

It is known that the above set partitioning formulation is a
good approximation of the capacitated lot-sizing problem if the
number of products is significantly greater than the number of
periods. See Karimi et al. [7]. This is very likely the case in the
planning environment that the considered lot-sizing problem is
usually applied in. It should be noted that, if appropriately applied
in an MRP-based planning environment, the SCLSP is an opera-
tional short-term planning problem with only a small number of
periods. In addition, the SCLSP is a big-bucket lot-sizing model
with a period length of, say, one week and many products
produced during the planning horizon. Moreover, the number of
products will be significantly greater than the number of planning
periods, if there are many products with sporadic demands.
Hence, the number of products is usually much larger than the
number of periods. For example, in a typical practical planning
environment that we observed in industry the planning horizon
was six weeks (periods) and the number of products was about
70. If by contrast the planning periods are short, then other model
formulations using small buckets are probably more adequate.
4. Solution approach

4.1. Overall procedure

With respect to the number of production plans considered we
follow the same approach as the set partitioning based solution
procedures proposed for the deterministic CLSP, i.e. we consider
only production plans with integer numbers of demand periods
covered by any production lot. As stated, for example, by
Cattrysse [19], this is a simplifying assumption, as with capacity
constraints the optimum solution may comprise a production lot
that covers less than the full demand of a period.

It is well known that even with this simplifying assumption
the number of production plans becomes prohibitively large even
for small problem instances. Therefore, generating all production
plans or rather setup patterns in advance is only feasible for very
small problem instances. However, as Model SCLSPSPP has the
same formal structure as its deterministic counterpart, we pro-
pose to use a column generation approach that generates the



Table 2
Column generation procedure.

(a) Solve the LP-relaxation of the restricted master problem.

Let sk ðk¼ 1,2, . . . ,KÞ and pt ðt ¼ 1,2, . . . ,TÞ be the optimal shadows prices.

(b) For k¼1,2,y,K (Subproblem k)

Solve the stochastic uncapacitated lot-sizing problem for product k.

Let copt
k

be the minimum objective value.

If ck ¼ copt
k �sk o0 then

Add a column for the optimal production plan of product k

to the restricted master problem.

endif

endfor

If at least one new column has been added, goto Step (a); otherwise goto

Step (c).

(c) Fix the production plans for all products with integer values of the

d�variables and adjust the period capacities accordingly.

Solve the remaining problem with the ABCb heuristic.

Fig. 1. Shortest-path network.
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candidate production plans as required. Column generation
(see Desaulniers et al. [21], Pochet and Wolsey [22] ) is a general
iterative solution technique for large-scale linear programs.
A column generation procedure starts with a restricted master
problem that contains only a few variables. New columns (vari-
ables) are generated in an iterative procedure as needed. In each
iteration, basically two steps are performed. First, the restricted
master problem is solved which provides optimum shadow
prices. Second, in order to find the most promising new variable
to be introduced into the restricted master problem, a subpro-
blem is solved with the objective to minimize the reduced costs.
If the minimum reduced costs are Z0, then there is no improving
variable and the original problem is solved.

In the current problem the LP-relaxation of the set partitioning
problem serves as the master problem. The corresponding sub-
problem comprises K product-specific uncapacitated dynamic lot-
sizing problems with random demand and a fill rate per cycle
constraint. These are solved with the exact solution procedure of
Tempelmeier and Herpers [23]. To find an all-integer solution of
model SCLSPSPP the ABCb heuristic is applied to a reduced model
including all products with fractional d�variables. See Cattrysse
et al. [19], Haase [20]. The overall procedure is specified
in Table 2.

As proposed by Haase [20], we start the column generation
procedure with a dummy production plan with zero production
and prohibitive high costs for each product.
4.2. Solution of a subproblem

A subproblem, i.e. a stochastic uncapacitated lot-sizing pro-
blem for product k, can be cast as a shortest-path problem with
T+1 nodes labeled (1,2,y,T+1), as depicted in Fig. 1 for the case of
T¼3. An edge originating at node t and ending at node j specifies
that the inventory on hand after production in period t covers the
demands from period t to j�1 to the extent dictated by the target
fill rate. The next setup is then scheduled for period j.

According to the general structure of a column generation
procedure that uses an LP relaxation of model SCLSPSPP, the costs
associated with an edge starting at node t and ending at node j

are given as

ctj ¼ EfCtjðP
opt
t Þg�pt � tbk � qtj, ð27Þ

where tbk denotes the capacity requirements for one unit of
product k. The term EfCtjð�Þg represents the corresponding
expected setup and holding costs that occur when the production
(setup) in period t covers the demand up to period (j�1). As the
production quantity required in period t to guarantee the target
service level depends on the net inventory at the beginning of
period t, which in turn is influenced by the optimum production
plan up to that period (denoted as Popt

t ), the costs cannot be
computed in advance (as in the deterministic counterpart of the
problem) but must be calculated during the solution procedure.
The details of the dynamic programming solution procedure for
this problem are given in Tempelmeier and Herpers [23].

Let copt
k denote the objective value of the optimum solution of

the shortest-path problem for product k. Then the reduced cost of
this optimum production plan for product k are

ck ¼ copt
k �sk: ð28Þ

If cko0, the current production plan for product k is added to
the set partitioning model. Once for each product a subproblem
has been solved, the next instance of model SCLSPSPP is generated
and its LP-relaxation is solved. The optimum solution provides
new values of the dual variables pt and sk which are then used to
generate new product-specific subproblems. The procedure ends
when no new production plans are generated.

At this point, all production plans with integer dn�variables are
fixed and their capacity requirements are subtracted from the
available period capacities. For the remaining products with frac-
tional dn�variables and the residual period capacities, the heuristic
ABCb procedure proposed by Tempelmeier and Herpers [6] is applied.
5. Numerical results

In order to test the quality of the proposed heuristic we
conducted a numerical experiment with two different data sets.
In a first step, we generated problem instances with up to 20
periods and up to 70 products. The period demands were
assumed to be normally distributed. The parameters of the data
set are shown in Table 3.

For each combination of the parameters T, K, b%

k (the same fill
rate is used for all products) and ‘Capacity’ ten replications were
generated, whereby the expected demands per product and
period were drawn from a continuous uniform distribution. For
each product, the coefficient of variation (used for the complete
demand series of this product) was selected from a discrete
uniform distribution with the possible outcomes {0.15, 0.2, 0.25,
0.3, 0.35}. The TBO-values of the products were randomly drawn
from the discrete uniform distribution with the possible out-
comes {1,5,10}. The holding costs of product k were calculated as
hk ¼ 2 � s=dk � TBO2

k where dk is the average demand per period
and the setup costs were s¼500 for all products. The period
capacity of the resource was calculated as follows. First, the
average workload w¼

PK
k ¼ 1 dk was computed. According to the

considered workload scenario {low, medium, high}, the capacity
bt was then set as blow

t ¼ 1:10 �w, bmedium
t ¼ 1:50 �w, and bhigh

t ¼ 2 �
w (t¼1,2,y,T). Depending on the target fill rate, the resulting
utilizations of the solved problem instances spanned between
47% and 97%. In addition, some combinations of fill rate and
capacity resulted in problem instances with capacity over-utiliza-
tion for which consequently no solution was found. In total, 3240
individual problem instances were generated.



Table 4
Results for the first experiment.

Capacity Average cost increase of ABCb Total (%)

T¼10 (%) T¼20 (%)

K¼10 1:10 �w 15.91 14.96 15.44

1:50 �w 12.53 9.30 10.91

2:00 �w 10.77 9.05 9.91

K¼40 1:10 �w 45.74 39.71 42.73

1:50 �w 29.00 23.56 26.28

2:00 �w 19.58 16.28 17.93

K¼70 1:10 �w 51.78 51.72 51.75

1:50 �w 33.20 29.34 31.27

2:00 �w 21.47 18.65 20.06

25.14

Table 5
Results for second experiment (intermittent demand).

Capacity Average cost increase of ABCb Total (%)

T¼10 (%) T¼20 (%)

K¼10 1:10 �w 25.15 – 25.15

1:50 �w 12.03 29.57 20.80

2:00 �w 9.92 14.97 12.45

K¼40 1:10 �w – – –

1:50 �w 11.38 11.46 11.42

2:00 �w 11.04 10.67 10.86

K¼70 1:10 �w – – –

1:50 �w 11.32 9.95 10.64

2:00 �w 12.08 11.79 11.94

13.95

Table 3
Parameters used for the first data set.

Number of periods, T {10, 20}

Number of products, K {10, 40, 70}

Fill rate, b%

c {0.5, 0.6, y, 0.9, 0.98}

Capacity {low, medium, high}

Mean period demand Continuous uniform U(0, 100)

Coefficient of variation Discrete uniform U(0.15, 0.2, 0.25, 0.3, 0.35)

Time-between-orders, TBO Discrete uniform U(1,5,10)
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Each problem instance was solved with the proposed column
generation heuristic (combined with the ABCb heuristic for the
remaining problem, as described above) and with the ABCb
heuristic of Tempelmeier and Herpers [6] alone. For the latter,
we used the parameter combination SH/SM/E which means that
the products were sorted according to the setup costs over the
holding costs ratio, the cost criterion was the Silver–Meal criter-
ion and the east direction was used.

For 2804 problem instances a feasible solution could be found
with both heuristics. The SABC heuristic solved 148 problem
instances which could not be solved with the column generation
heuristic. The reason may be that the candidate plans considered
by the column generation heuristic only cover integer numbers
of demand periods. Particularly with low capacity, it may be
required to consider demand splitting in order to find a feasible
solution.

For 97.95% of all solved problem instances the proposed
column generation heuristic found the best solution. For these
problems, the solution quality of the column generation heuristic
was on the average 25.14% better than with the ABCb heu-
ristic. Table 4 shows the relative cost increase of the ABCb heu-
ristic compared to the solution found with the column generation
(CG) heuristic, i.e. the ratio ðABCb=CG�1Þ.

On the other hand, in 2.05% of all problem instances (exclusively
small problems with 10 products) the ABCb heuristic performed
better. However, in these cases the average cost difference was
only 0.09%.

In the second part of the experiment, we used the same
parameters as before, with one exception. Before generating the
period demand data based on the normal distribution as described
above, we used a Bernoulli random variable to decide if a positive
demand occurs in that period at all. In particular, for each period
and product we proceeded as follows: (1) Generate as continuous
uniform U(0,1) random number r. (2) If rrp, generate normal
distributed demand in the same way as in the first experiment.
In this way, intermittent (sporadic) demand was generated. We
used p¼0.3.

Here, 2682 problem instances were solved with both heuristics,
whereby ABCb solved only 1866 instances. The relative performance
of both heuristics is as observed with the first experiment. For
98.07% of all solved problem instances the proposed column
generation heuristic found the best solution. For these problems,
the solution quality of the column generation heuristic was on the
average 13.95% better. Only in 1.93% of all instances the ABCb
heuristic performed better with an average cost difference of 0.07%.
The detailed results are shown in Table 5, whereby the empty cells
denote the problem classes where the ABCb heuristic could not find
a feasible solution and hence no benchmark solutions are available
for the column generation heuristic.

It appears that the proposed column generation heuristic
performs quite well compared to the ABCb heuristic. This is
particularly true when the number of products is large compared
to the number of periods on a standard PC whereby the LP
problems where solved with CPLEX. Moreover, the cost difference
is largest with low capacity or rather high utilization of the
resource.

The computation times for the column generation heuristics
ranged between 0.2 and 5 s (the latter for the problems with 20
periods and 70 products). For the problems with T¼20 periods
the ABCb heuristic was about twice as fast on the average. For the
problems with T¼10 periods the column generation heuristic ran
slightly faster than the ABCb heuristic.
6. Conclusion

In this paper we introduced an approximate model for the
single level capacitated lot-sizing problem with dynamic stochas-
tic demand under a fill rate constraint. We proposed to combine a
column generation procedure to solve the LP-relaxation of the
model with the ABCb heuristic of Tempelmeier and Herpers [6] to
solve the remaining problem. The quality of the solutions is
compared to the results found with the application of the ABCb
heuristic of Tempelmeier and Herpers [6] alone. It was found that
the proposed heuristic is fast and that it provides solutions that
are on the average superior to the ABCb heuristic.

In addition, the set partitioning model has the significant
advantage that due to the model structure it is able to easily
include setup times. However, in this case, the solution requires a
heuristic for the remaining problem that can also handle setup
times. This will be a subject for further research.
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